Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
J Infect ; : 106161, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663754

RESUMO

OBJECTIVES: Current guidelines recommend broad-spectrum antibiotics for high-severity community-acquired pneumonia (CAP), potentially contributing to antimicrobial resistance (AMR). We aim to compare outcomes in CAP patients treated with amoxicillin (narrow-spectrum) versus co-amoxiclav (broad-spectrum), to understand if narrow-spectrum antibiotics could be used more widely. METHODS: We analysed electronic health records from adults (≥16y) admitted to hospital with a primary diagnosis of pneumonia between 01-January-2016 and 30-September-2023 in Oxfordshire, United Kingdom. Patients receiving baseline ([-12h,+24h] from admission) amoxicillin or co-amoxiclav were included. The association between 30-day all-cause mortality and baseline antibiotic was examined using propensity score (PS) matching and inverse probability treatment weighting (IPTW) to address confounding by baseline characteristics and disease severity. Subgroup analyses by disease severity and sensitivity analyses with missing covariates imputed were also conducted. RESULTS: Among 16,072 admissions with a primary diagnosis of pneumonia, 9,685 received either baseline amoxicillin or co-amoxiclav. There was no evidence of a difference in 30-day mortality between patients receiving initial co-amoxiclav vs. amoxicillin (PS matching: marginal odds ratio 0.97 [0.76-1.27], p=0.61; IPTW: 1.02 [0.78-1.33], p=0.87). Results remained similar across stratified analyses of mild, moderate, and severe pneumonia. Results were also similar with missing data imputed. There was also no evidence of an association between 30-day mortality and use of additional macrolides or additional doxycycline. CONCLUSIONS: There was no evidence of co-amoxiclav being advantageous over amoxicillin for treatment of CAP in 30-day mortality at a population-level, regardless of disease severity. Wider use of narrow-spectrum empirical treatment of moderate/severe CAP should be considered to curb potential for AMR.

2.
Atherosclerosis ; 392: 117526, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38581738

RESUMO

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a novel concept proposed in 2020, which is more practical for identifying patients with fatty liver disease with high risk of disease progression. Fatty liver is a driver for extrahepatic complications, particularly cardiovascular diseases (CVD). Although the risk of CVD in MAFLD could be predicted by carotid ultrasound test, a very early stage prediction method before the formation of pathological damage is still lacking. METHODS: Stool microbiomes and plasma metabolites were compared across 196 well-characterized participants encompassing normal controls, simple MAFLD patients, MAFLD patients with carotid artery pathological changes, and MAFLD patients with diagnosed coronary artery disease (CAD). 16S rDNA sequencing data and untargeted metabolomic profiles were interrogatively analyzed using differential abundance analysis and random forest (RF) machine learning algorithm to identify discriminatory gut microbiomes and metabolomic. RESULTS: Characteristic microbial changes in MAFLD patients with CVD risk were represented by the increase of Clostridia and Firmicutes-to-Bacteroidetes ratios. Faecalibacterium was negatively correlated with mean-intima-media thickness (IMT), TC, and TG. Megamonas, Bacteroides, Parabacteroides, and Escherichia were positively correlated with the exacerbation of pathological indexes. MAFLD patients with CVD risk were characterized by the decrease of lithocholic acid taurine conjugate, and the increase of ethylvanillin propylene glycol acetal, both of which had close relationship with Ruminococcus and Gemmiger. Biotin l-sulfoxide had positive correlation with mean-IMT, TG, and weight. The general auxin pesticide beta-naphthoxyacetic acid and the food additive glucosyl steviol were both positively correlated with the increase of mean-IMT. The model combining the metabolite signatures with 9 clinical parameters accurately distinguished MAFLD with CVD risk in the proband and validation cohort. It was found that citral was the most important discriminative metabolite marker, which was validated by both in vitro and in vivo experiments. CONCLUSIONS: Simple MAFLD patients and MAFLD patients with CVD risk had divergent gut microbes and plasma metabolites. The predictive model based on metabolites and 9 clinical parameters could effectively discriminate MAFLD patients with CVD risk at a very early stage.

3.
Phys Rev Lett ; 132(11): 113802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563911

RESUMO

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels that produce a quantized Hall conductance; due to their chirality, and the topological protection by the Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here, we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured loss configuration imparts the edge states' complex energy spectrum with a feature known as point-gap winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant of the bulk (which remains intact) and induces mode localization via the "non-Hermitian skin effect." The interplay of the two topological phenomena-the Chern number and point-gap winding-gives rise to a non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle. Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have superior robustness against local defects and disorders.

4.
Anal Chim Acta ; 1303: 342528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609267

RESUMO

Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.

5.
NPJ Digit Med ; 7(1): 91, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609437

RESUMO

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

6.
Heliyon ; 10(7): e29285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633650

RESUMO

Background: EEPD1 is vital in homologous recombination, while its role in cancer remains unclear. Methods: We performed multiple pan-cancer analyses of EEPD1 with bioinformatics methods, such as gene expression, gene alterations, Prognosis and enrichment analysis, tumor microenvironment, immune cell infiltration, TMB, MSI, immunotherapy, co-expression of genes, and drug resistance. Finally, RT-qPCR, EdU, and transwell assays helped investigate the impact of EEPD1 on CRC cells. Results: EEPD1 was dysregulated and correlated with bad prognosis in several cancers. GSVA and GSEA revealed that EEPD1 was primarily associated with the "WNT_BETA_CATENIN_SIGNALING," "ribonucleoprotein complex biogenesis," "Ribosome," and "rRNA processing." The infiltration of CD8+ T cells, MAIT cells, iTreg cells, NK cells, Tc cells, Tex cells, Tfh cells, and Th1 cells were negatively correlated with EEPD1 expression. Additionally, EEPD1 is significantly associated with TMB and MSI in COAD, while enhanced CRC cell proliferation and migration. Conclusions: EEPD1 was dysregulated in human cancers and correlated with various cancer patient prognoses. The dysregulated EEPD1 expression can affect tumor-infiltrating immune cells and immunotherapy response. Therefore, EEPD1 could act as an oncogene associated with immune cell infiltration in CRC.

7.
Materials (Basel) ; 17(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38591584

RESUMO

Metal-coated lattice structures hold significant promise for customizing mechanical properties in diverse industrial applications, including the mechanical arms of unmanned aerial vehicles. However, their intricate geometries pose computational challenges, resulting in time-intensive and costly numerical evaluations. This study introduces a parameterization-based multiscale method to analyze body-centered cubic lattice structures with metal coatings. We establish the validity and precision of our proposed method with a comparative analysis of numerical results at the Representative Volume Element (RVE) scale and experimental findings, specifically addressing both elastic tensile and bending stiffness. Furthermore, we showcase the method's accuracy in interpreting the bending stiffness of coated lattice structures using a homogenized material-based solid model, underscoring its effectiveness in predicting the elastic properties of such structures. In exploring the mechanical characterization of coated lattice structures, we unveil positive correlations between elastic tensile stiffness and both coating thickness and strut diameter. Additionally, the metal coating significantly enhances the structural elastic bending stiffness multiple times over. The diverse failure patterns observed in coated lattices under tensile and bending loads primarily stem from varied loading-induced stress states rather than external factors. This work not only mitigates computational challenges but also successfully bridges the gap between mesoscale RVE mechanical properties and those at the global structural scale.

8.
Cell Death Discov ; 10(1): 114, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448410

RESUMO

For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.

9.
Free Radic Biol Med ; 216: 60-77, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479634

RESUMO

Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.


Assuntos
Desoxiadenosinas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neuroinflamatórias , Proteômica , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos
10.
Biochem Biophys Res Commun ; 708: 149815, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531220

RESUMO

Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.


Assuntos
Dioxóis , Fígado Gorduroso , Lignanas , Pró-Proteína Convertase 9 , Fatores de Transcrição SOXC , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Mitofagia , Ácido Oleico/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
11.
Environ Sci Pollut Res Int ; 31(16): 24282-24301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438641

RESUMO

Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.


Assuntos
Cádmio , Metais Pesados , Adulto , Humanos , Teorema de Bayes , Chumbo , Inquéritos Nutricionais , Cobalto , Obesidade
12.
Front Oncol ; 14: 1255438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454930

RESUMO

Objective: The aim of this study was to assess the ability of a multiparametric magnetic resonance imaging (MRI)-based radiomics signature model to predict disease-free survival (DFS) in patients with rectal cancer treated by surgery. Materials and methods: We evaluated data of 194 patients with rectal cancer who had undergone radical surgery between April 2016 and September 2021. The mean age of all patients was 62.6 ± 9.7 years (range: 37-86 years). The study endpoint was DFS and 1132 radiomic features were extracted from preoperative MRIs, including contrast-enhanced T1- and T2-weighted imaging and apparent diffusion coefficient values. The study patients were randomly allocated to training (n=97) and validation cohorts (n=97) in a ratio of 5:5. A multivariable Cox regression model was used to generate a radiomics signature (rad score). The associations of rad score with DFS were evaluated using Kaplan-Meier analysis. Three models, namely a radiomics nomogram, radiomics signature, and clinical model, were compared using the Akaike information criterion. Result: The rad score, which was composed of four MRI features, stratified rectal cancer patients into low- and high-risk groups and was associated with DFS in both the training (p = 0.0026) and validation sets (p = 0.036). Moreover, a radiomics nomogram model that combined rad score and independent clinical risk factors performed better (Harrell concordance index [C-index] =0.77) than a purely radiomics signature (C-index=0.73) or clinical model (C-index=0.70). Conclusion: An MRI radiomics model that incorporates a radiomics signature and clinicopathological factors more accurately predicts DFS than does a clinical model in patients with rectal cancer.

13.
Anal Chim Acta ; 1301: 342447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553119

RESUMO

BACKGROUND: Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases, results in severe cognitive decline and irreversible memory loss. Early detection of AD is significant to patients for personalized intervention since effective cure and treatment methods for AD are still lacking. Despite the severity of the disease, existing highly sensitive AD detection methods, including neuroimaging and brain deposit-positive lesion tests, are not suitable for screening purposes due to their high cost and complicated operation. Therefore, these methods are unsuitable for early detection, especially in low-resource settings. Although regular paper-based microfluidics are cost-efficient for AD detection, they are restricted by a poor limit of detection (LOD). RESULTS: To address the above limitations, we report the ultrasensitive and low-cost nanocellulose paper (nanopaper)-based analytical microfluidic devices (NanoPADs) for detecting one of the promising AD blood biomarkers (glial fibrillary acidic protein, GFAP) using Surface-enhanced Raman scattering (SERS) immunoassay. Nanopaper offers advantages as a SERS substrate, such as an ultrasmooth surface, high optical transparency, and tunable chemical properties. We detected the target GFAP in artificial serum, achieving a LOD of 150 fg mL-1. SIGNIFICANCE: The developed NanoPADs are distinguished by their cost-efficiency and ease of implementation, presenting a promising avenue for effective early detection of AD's GFAP biomarker with ultrahigh sensitivity. More importantly, our work provides the experimental routes for SERS-based immunoassay of biomarkers on NanoPADs for various diseases in the future.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Doença de Alzheimer/diagnóstico , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Análise Espectral Raman/métodos , Biomarcadores
14.
J Agric Food Chem ; 72(13): 7411-7422, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38390847

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), as the most common phthalate, has been extensively used as a plasticizer to improve the plasticity of agricultural products, which pose severe harm to human health. Mitochondrial dynamics and endoplasmic reticulum (ER) homeostasis are indispensable for maintaining mitochondria-associated ER membrane (MAM) integrity. In this study, we aimed to explore the effect of DEHP on the nervous system and its association with the ER-mitochondria interaction. Here, we showed that DEHP caused morphological changes, motor deficits, cognitive impairments, and blood-brain barrier disruption in the brain. DEHP triggered ER stress, which is mainly mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) signaling. Moreover, DEHP-induced mitofusin-2 (Mfn2) downregulation results in imbalance of the mitochondrial dynamics. Interestingly, DEHP exposure impaired MAMs by inhibiting the Mfn2-PERK interaction. Above all, this study elucidates the disruption of the Mfn2-PERK axis-mediated ER-mitochondria interaction as a phthalate-induced neurotoxicity that could be potentially developed as a novel therapy for neurological diseases.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Mitocôndrias/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Hidrolases/metabolismo
15.
NPJ Digit Med ; 7(1): 33, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347090

RESUMO

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients' Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life-through objective and remote digital outcomes-paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials.

16.
J Virol ; 98(3): e0168623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376196

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) can lead to severe reproductive problems in sows, pneumonia in weaned piglets, and increased mortality, significantly negatively impacting the economy. Post-translational changes are essential for the host-dependent replication and long-term infection of PRRSV. Uncertainty surrounds the function of the ubiquitin network in PRRSV infection. Here, we screened 10 deubiquitinating enzyme inhibitors and found that the ubiquitin-specific proteinase 1 (USP1) inhibitor ML323 significantly inhibited PRRSV replication in vitro. Importantly, we found that USP1 interacts with nonstructural protein 1ß (Nsp1ß) and deubiquitinates its K48 to increase protein stability, thereby improving PRRSV replication and viral titer. Among them, lysine at position 45 is essential for Nsp1ß protein stability. In addition, deficiency of USP1 significantly reduced viral replication. Moreover, ML323 loses antagonism to PRRSV rSD16-K45R. This study reveals the mechanism by which PRRSV recruits the host factor USP1 to promote viral replication, providing a new target for PRRSV defense.IMPORTANCEDeubiquitinating enzymes are critical factors in regulating host innate immunity. The porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1ß (Nsp1ß) is essential for producing viral subgenomic mRNA and controlling the host immune system. The host inhibits PRRSV proliferation by ubiquitinating Nsp1ß, and conversely, PRRSV recruits the host protein ubiquitin-specific proteinase 1 (USP1) to remove this restriction. Our results demonstrate the binding of USP1 to Nsp1ß, revealing a balance of antagonism between PRRSV and the host. Our research identifies a brand-new PRRSV escape mechanism from the immune response.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Feminino , Endopeptidases/genética , Peptídeo Hidrolases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
17.
Chempluschem ; : e202300704, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363060

RESUMO

Nanocomposite represents the backbone of many industrial fabrication applications and exerts a substantial social impact. Among these composites, metal nanostructures are often employed as the active constituents, thanks to their various chemical and physical properties, which offer the ability to tune the application scenarios in thermal management, energy storage, and biostable materials, respectively. Nanocellulose, as an emerging polymer substrate, possesses unique properties of abundance, mechanical flexibility, environmental friendliness, and biocompatibility. Based on the combination of flexible nanocellulose with specific metal fillers, the essential parameters involving mechanical strength, flexibility, anisotropic thermal resistance, and conductivity can be enhanced. Nowadays, the approach has found extensive applications in thermal management, energy storage, biostable electronic materials, and piezoelectric devices. Therefore, it is essential to thoroughly correlate cellulose nanocomposites' properties with different metallic fillers. This review summarizes the extraction of nanocellulose and preparation of metal modified cellulose nanocomposites, including their wide and particular applications in modern advanced devices. Moreover, we also discuss the challenges in the synthesis, the emerging designs, and unique structures, promising directions for future research. We wish this review can give a valuable overview of the unique combination and inspire the research directions of the multifunctional nanocomposites using proper cellulose and metallic fillers.

18.
Animals (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338015

RESUMO

This study explored the effects of dietary protein levels on Litopenaeus vannamei with its intestinal microbiota and transcriptome responses. Previous studies on the effects of dietary protein levels on L. vannamei have focused on growth performance, antioxidant indices, and digestive enzyme activity, but few studies have been conducted at the microbiological and molecular levels. In this study, five isolipid experimental diets with protein levels of 32% (P32), 36% (P36), 40% (P40), 44% (P44), and 48% (P48) were used in an L. vannamei (0.63 ± 0.02 g) feeding trial for 56 days. At the end of the feeding trial, the growth performance, immunity, intestinal health, and transcriptional responses of L. vannamei were determined. This study demonstrated that higher protein levels (P44) led to superior weight gain and growth rates for L. vannamei, with lower feed conversion ratios (FCR) observed in the P48 and P44 groups compared to the P32 and P36 groups (p ≤ 0.05). The P44 and P48 groups also showed a notably higher protein efficiency ratio (PER) compared to others (p ≤ 0.05), and there was no significant difference between them. Upon Vibrio parahaemolyticus infection, the P48 group exhibited a significantly lower survival rate (SR) within 48 h, while during 72 h of white spot syndrome virus (WSSV) infection, the P44 group had a notably higher survival rate than the P32 group (p ≤ 0.05). Digestive enzyme activity and antioxidant levels in L. vannamei initially increased and then decreased as protein levels increased, usually peaking in the P40 or P44 groups. Lower dietary protein levels significantly reduced the relative abundance of beneficial bacteria and increased the relative abundance of pathogenic bacteria in the intestines of L. vannamei. Transcriptome sequencing analysis revealed that most differentially expressed genes (DEGs) were up-regulated and then down-regulated as dietary protein levels increased. Furthermore, KEGG pathway enrichment analysis indicated that several immune and metabolic pathways, including metabolic pathways, glutathione metabolism, cytochrome P450, and lysosome and pancreatic secretion, were significantly enriched. In summary, the optimal feed protein level for L. vannamei shrimp was 40-44%. Inappropriate feed protein levels reduced antioxidant levels and digestive enzyme activity and promoted pathogen settlement, deceasing factors in various metabolic pathways that respond to microorganisms through transcriptional regulation. This could lead to stunted growth in L. vannamei and compromise their immune function.

20.
Medicine (Baltimore) ; 103(6): e32848, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335437

RESUMO

To explore the expression and the diagnostic value of ADAM17 in pernicious placenta previa (PPP) combined placental accreta. A total of 148 PPP patients were enrolled and divided into 2 groups: 62 patients with placenta accrete (PPP with PA group) and 86 patients without placenta accrete (PPP without PA group). In the same period, 74 pregnant women without PPP who had undergone cesarean section were selected as controls. The levels of ADAM17 were detected by qt-PCR. Diagnostic efficiency of ADAM17 were evaluated by receiver operating characteristics curve. ADAM17 was higher expression in PPP patients. Multivariate analysis showed that ADAM17 was related to gravida times (HR = 2.43 95% CI, 1.25-3.31), history of cesarean delivery (HR = 3.44, 95% CI = 2.24-4.28), history of abortions (HR = 2.22, 95% CI = 1.57-3.06) for PPP with PA patients and gravida times (HR = 2.01, 95% CI = 1.45-2.86), history of cesarean delivery (HR = 1.89, 95% CI = 1.33-2.48) for PPP patients without PA. Diagnostic efficiency of ADAM17 indicated that the sensitivity and specificity of ADAM17 detection for PPP with PA were 74.41% and 67.21% and for PPP without PA were 89.29% and 85.52%. Area under curve were 0.7876 (0.7090-0.8661) for PPP with PA and 0.9443 (0.9136-0.9750) for PPP without PA. Insummary, ADAM17 was higher expression in patients with PPP. ADAM17 was associated with gravida times, history of cesarean delivery, history of abortions. It also indicated a better diagnostic efficiency for patients with PPP. Further larger sample, multicenter studies should be conducted to confirm the conclusion from our study.


Assuntos
Proteína ADAM17 , Placenta Acreta , Placenta Prévia , Feminino , Humanos , Gravidez , Cesárea , Placenta , Placenta Acreta/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...